Let $f$ be a positive-valued,concave function on $[0,1]$,Prove that $$6\left(\int_{0}^{1}f(x)dx\right)^2\le 1+ 8\int_{0}^{1}f^3(x)dx$$
Let $$A=\int_{0}^{1}f^3(x)dx,B=\left(\int_{0}^{1}f(x)dx\right)^2$$ $$\Longleftrightarrow 6B\le 1+8A$$ let $$F(x)=\int_{0}^{x}f(t)dt$$ $$F(x)=x\int_{0}^{1}f[ux+(1-u)\cdot 0]du\ge x\int_{0}^{1}[uf(x)+(1-u)du=\dfrac{xf(x)}{2}+\dfrac{x}{2}$$
Maybe this problem folowing can use Cauchy-Schwarz inequality to solve it,Thank you