I am looking for an integral domain in which we have an infinitely ascending chain of ideals.
Clearly, this can't be a PID. Also, I am looking for examples other than infinite dimensional fields, integral domains like $k[x_1,x_2,\dots]$.
I am looking for an integral domain in which we have an infinitely ascending chain of ideals.
Clearly, this can't be a PID. Also, I am looking for examples other than infinite dimensional fields, integral domains like $k[x_1,x_2,\dots]$.