prove the inequality if you can: $\frac{1}{2}\cdot\frac{2}{3}\cdots\frac{2n-1}{2n}<\frac{1}{\sqrt{2n+1}}$
Thanks.
prove the inequality if you can: $\frac{1}{2}\cdot\frac{2}{3}\cdots\frac{2n-1}{2n}<\frac{1}{\sqrt{2n+1}}$
Thanks.
I assume that $n$ is a integer positive number. Then:
$$\frac{1}{2}\cdot\frac{2}{3}\cdots\frac{2n-1}{2n} = \frac{(2n-1)!}{(2n)!} = \frac{1}{2n} < \frac{1}{\sqrt{2n+1}}$$
$$\sqrt{2n+1}<2n$$ $$2n+1 < 4n^2$$ $$4n^2-2n-1>0$$
Real solutions of $4n^2-2n-1=0$ are $n=\frac{1 \pm \sqrt{5}}{4}$ ($n=0.809...$, $n=-0.309...$). This parabola is always positive for every number greater than $n=0.809$ and hence it is satisfied for every integer $n\geq1$.
$$\frac{1}{2}<\frac{2}{3},$$ $$\frac{3}{4}<\frac{4}{5},$$ $$.........................$$ $$\frac{2n-1}{2n}<\frac{2n}{2n+1},$$ $$\frac{1}{2}\cdot\frac{3}{4}\cdots\frac{2n-1}{2n}<\frac{2}{3}\cdot\frac{4}{5}\cdots\frac{2n}{2n+1}/\cdot \left(\frac{1}{2}\cdot\frac{3}{4}\cdots\frac{2n-1}{2n}\right)$$ $$\left(\frac{1}{2}\cdot\frac{3}{4}\cdots\frac{2n-1}{2n}\right)^2<\frac{1}{2}\cdot\frac{3}{4}\cdots\frac{2n-1}{2n}\cdot \frac{2}{3}\cdot\frac{4}{5}\cdots\frac{2n}{2n+1}$$ $$\left(\frac{1}{2}\cdot\frac{3}{4}\cdots\frac{2n-1}{2n}\right)^2<\frac{1}{2n+1}$$ $$\frac{1}{2}\cdot\frac{3}{4}\cdots\frac{2n-1}{2n}<\frac{1}{\sqrt{2n+1}}$$