Calculate this limit $$\lim\limits_{n \to \infty} \frac{1}{n}\left(1+\frac{1}{\sqrt[n]{2}}+\frac{1}{\sqrt[n]{3}}+\dotsb+\frac{1}{\sqrt[n]{n}}\right).$$
I think inside the parentheses, each limit is $1$, and there are $n$ of them, so their sum is limited to $n$. Also,
$$\lim\limits_{n \to \infty}\frac{1}{n}=0.$$
Therefore I think, $$\lim\limits_{n \to \infty} \frac{1}{n}\left(1+\frac{1}{\sqrt[n]{2}}+\frac{1}{\sqrt[n]{3}}+\dotsb+\frac{1}{\sqrt[n]{n}}\right) = 0.$$
Is this solution correct? If so, how to prove it?