$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(#1\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
\begin{align}&\totald{}{\alpha}\int_{0}^{1}
\ln\pars{\Gamma\pars{x + \alpha}}\,\dd x
=\int_{0}^{1}\partiald{\ln\pars{\Gamma\pars{x + \alpha}}}{\alpha}\,\dd x
=\int_{0}^{1}\partiald{\ln\pars{\Gamma\pars{x + \alpha}}}{x}\,\dd x
\\[3mm]&=\ln\pars{\Gamma\pars{1 + \alpha} \over \Gamma\pars{\alpha}}
=\ln\pars{\alpha}
\end{align}
\begin{align}&\int_{0}^{1}\ln\pars{\Gamma\pars{x + \alpha}}\,\dd x
=\alpha\ln\pars{\alpha} - \alpha + \int_{0}^{1}\ln\pars{\Gamma\pars{x}}\,\dd x
\end{align}
\begin{align}&\int_{0}^{1}\ln\pars{\Gamma\pars{x}}\,\dd x
=\int_{0}^{1}\ln\pars{\Gamma\pars{1 - x}}\,\dd x
=\int_{0}^{1}\ln\pars{\pi \over \Gamma\pars{x}\sin\pars{\pi x}}\,\dd x
\\[3mm]&=\ln\pars{\pi} - \int_{0}^{1}\ln\pars{\sin\pars{\pi x}}\,\dd x
-\int_{0}^{1}\ln\pars{\Gamma\pars{x}}\,\dd x
\end{align}
\begin{align}&\int_{0}^{1}\ln\pars{\Gamma\pars{x}}\,\dd x
=\half\,\ln\pars{\pi}
-{1 \over 2\pi}\
\underbrace{\int_{0}^{\pi}\ln\pars{\sin\pars{x}}\,\dd x}_{\ds{-\pi\ln\pars{2}}}
=\half\,\ln\pars{2\pi}
\end{align}
The above $\ds{\ul{\ln\pars{\sin\pars{\cdots}}\!\mbox{-integral}}}$ is a well known result and it appears frequently in M.SE.
$$\color{#66f}{\large%
\int_{0}^{1}\ln\pars{\Gamma\pars{x + \alpha}}\,\dd x
={\ln\pars{2\pi} \over 2} + \alpha\ln\pars{\alpha} - \alpha}
$$