0

Show that ${(n!)^2>n^n}$.

I am trying to use the ${AM \geq GM}$ inequality but I am not getting what I should get. Please help! Thank you!! :))

2 Answers2

2

$$(n!)^2=n1\ (n-1)2\ (n-2)3\cdots 2(n-1)\ 1n > n^n$$ because for $1\le k\le n-1$ each factor $(n-k)(k+1)=(n-k-1)k+n>n$.

1

Using the induction:

  • For $n=1$ the result is clear.
  • The inductive step $$(n+1)!=(n+1)n!\le (n+1)n^n\le (n+1)(n+1)^n=(n+1)^{n+1}$$ so $$n!\le n^n,\qquad \forall n\ge1$$