(1) How ca we prove $\displaystyle \tan^{-1}(x)+\tan^{-1}(y) = \pi+\tan^{-1}\left(\frac{x+y}{1-xy}\right)\;,$ when $x>0,y>0,xy>1$
(2) How ca we prove $\displaystyle \tan^{-1}(x)+\tan^{-1}(y) = -\pi+\tan^{-1}\left(\frac{x+y}{1-xy}\right)\;,$when $x<0,y<0,xy>1$
$\bf{My\; Try::}$ My Try for $(1)\;,$ Let $\tan^{-1}(x)=A\Rightarrow x = \tan (A)$ and $\tan^{-1}(y) = B\Rightarrow y = \tan(B)$
Now $\displaystyle \tan(A+B) = \frac{\tan A+\tan B}{1-\tan A\cdot \tan B} = \frac{x+y}{1-xy}$
and Given $x>0\Rightarrow \tan A>0$ and $y>0\Rightarrow \tan B>0$ and given $xy>1$
So $\displaystyle \frac{x+y}{1-xy}<0\Rightarrow \tan (A+B)<0$
Means $(A+B)$ lies in $\bf(II)$ quadrant or in $\bf{(IV)}$ quadrant.
But above $\displaystyle \tan (A)\;\;,\tan (B)>0\Rightarrow 0<A,B<\frac{\pi}{2}$.
So $\displaystyle 0<A+B<\pi$(Means $(A+B)$ lies on $\bf{I}$ quadrant.)
Now I did not understand how can i solve it.
Help me
Thanks