Does the following series converge
$$ \sum_1^{\infty} \frac{ 1 \cdot 3 \cdot 5 \cdots (2n-1)}{4^n 2^n n!} $$
Does the following series converge
$$ \sum_1^{\infty} \frac{ 1 \cdot 3 \cdot 5 \cdots (2n-1)}{4^n 2^n n!} $$
But maybe even easier than the ratio test: $$\frac{ 1 \cdot 3 \cdot 5 \cdots (2n-1)}{4^n 2^n n!} =\frac{ 1 \cdot 3 \cdot 5 \cdots (2n-1)}{4^n(2\cdot4\cdot6\cdots(2n))} <\frac{1}{4^n}\ ,$$ and then use the comparison test.
Note that $1\times3\times\cdots\times(2n-1)=\dfrac{(2n)!}{2^nn!}$. Thus, the sum is $$\sum^{\infty}_{n=1}\dfrac{(2n)!}{2^{4n}(n!)^2}$$ Use the ratio test: $$\lim_{n\to\infty}\left|\dfrac{(2n+2)!}{2^{4(n+1)}((n+1)!)^2}\dfrac{2^{4n}(n!)^2}{(2n)!}\right|=\lim_{n\to\infty}\left|\dfrac{(2n+2)(2n+1)}{2^{4}(n+1)^2}\right|<1$$ The series converges, and sums to $\dfrac{2}{\sqrt{3}}$.