Actual Question is :
What are all possible galois groups of an irreducible Quartic polynomial over $\mathbb{Q}$
As polynomial is irreducible, Galois group is transitive subgroup of $S_4$.
I have no idea what (actually why) are all transitive subgroups of $S_4$.
Firstly, I would distinguish what are all possible subgroups (and then see for transitive subgroups) of $S_4$.
As $|S_4|=24$ only possible orders of subgroups of $S_4$ are $\{1,2,3,4,6,8,12,24\}$
Subgroup of order $24$
- $S_4$ is subgroup of order $24$ in $S_4$ (Trivial)
Subgroup of order $12$
- I have proved sometime back that $A_4$ is the only subgroup of $S_4$ having order $12$ but i could not recall the proof now (I would be thankful if some one can give some hint).
Subgroups of order $8$
As $|S_4|=2^3.3$, there does exist a sylow $2$ subgroup i.e., subgroup of order $8$ in $S_4$. Only groups (upto isomorphism) of order $8$ are : $\mathbb{Z}_8,\mathbb{Z}_4\times \mathbb{Z}_2, \mathbb{Z}_2\times \mathbb{Z}_2\times \mathbb{Z}_2, D_8,Q_8$.
$\mathbb{Z}_8$ can not be a subgroup of $S_4$ as $S_4$ does not have an element of order $8$.
With lot of labor work i could see that no element of order $4$ commutes with an element of order $2$ thus $\mathbb{Z}_4\times \mathbb{Z}_2$ can not be subgroup of $S_4$.(Help needed)
As of now i can not conclude why (I know it is but not why) $ \mathbb{Z}_2\times \mathbb{Z}_2\times \mathbb{Z}_2$ is a subgroup of $S_4$. (Help needed)
I know $D_8$ can be seen as subgroup of $S_4$.
I know $Q_8$ can not be a subgroup of $S_4$.
Subgroups of order $6$
Only groups of order $6$ are $\mathbb{Z}_6$ and $S_3$.
- $\mathbb{Z}_6$ can not be subgroup of $S_4$ as $S_4$ do not have an element of order $6$.
- $S_3$ is subgroup of $S_4$. This is not transitive because : Suppose $S_3$ fixes $4$ then there is no way i can get an element which maps say $3$ to $4$. Thus $S_3$ is not transitive subgroup of $S_4$.. So, this $S_3$ is out of this game.
Subgroups of order $4$
Only subgroups of order $4$ are $\mathbb{Z}_4$ and $\mathbb{Z}_2\times \mathbb{Z}_2$.
- $\mathbb{Z}_4$ is a subgroup of $S_4$ as $\{Id, (1234),(13)(24),(1432)\}$ which can be easily seen to be transitive..
In $\mathbb{Z}_4$, i can send $1$ to $2$ with $(1234)$ ; $1$ to $3$ with $(13)(24)$ and $1$ to $4$ with $(1432)$ similarly i can other elements to every othe element.. So, $\mathbb{Z}_4$ is seen to be transitive subgroup of $S_4$.
$\mathbb{Z}_2\times \mathbb{Z}_2$ is a subgroup of $S_4$ seen as $\{Id, (12)(34),(13)(24),(14)(23)\}$ . In this also i can send each element to all other elements and thus $\mathbb{Z}_2\times \mathbb{Z}_2$ is a transitive subgroup of $S_4$.
Subgroups of order $3$
- No subgroup of order $3$ can be transitive for the same reason (actually for a more simple reason) as why $S_3$ is not transitive.
Subgroups of order $2$
- No subgroup of order $2$ can be transitive for the same reason (actually for a more simple reason)as why $S_3$ is not transitive.
Subgroups of order $1$
- Trivial subgroup is not transitive.
So, Only subgroups of importance (transitive subgroups) i am worried about are....
- $S_4$ which is trivially transitive
- $A_4$ is transitive.
- $D_8$ is transitive.
- $\mathbb{Z}_4$ is transitive.
- $\mathbb{Z}_2\times \mathbb{Z}_2$ is transitive.
I would be thankful if some one can help me to make this a bit more clear and simple..