Prove the following \begin{equation}\int_0^\infty\frac{\sin^2x}{x^2(1+x^2)}\,dx=\frac{\pi}{4}+\frac{\pi}{4e^2}\end{equation}
I would love to see how Mathematics SE users prove the integral preferably with the Feynman way (other methods are welcome). Thank you. (>‿◠)✌
Original question:
And of course, for the sadist with a background in differential equations, I invite you to try your luck with the last integral of the group.
\begin{equation}\int_0^\infty\frac{\sin^2x}{x^2(1+x^2)}\,dx\end{equation}
Source: Integration: The Feynman Way