I have this integral $$u(x,t)=\int _{-\infty}^{\infty} f(\eta)\left[\frac{1}{2\pi}\int _{-\infty}^{\infty}e^{iw(x-\eta)-w^2t}\ dw\right]\ d\eta=\int _{-\infty}^{\infty}k(x-\eta,t)f(\eta)\ d\eta$$ I want to prove $$k(x,t)=\frac{1}{\sqrt{4\pi t} }\ e^{\Large \frac{-x^2}{4t}} $$
Thanks for helping me out.