Given: $m$ and $n$ are positive real numbers satisfying the equation
$$m+4\sqrt{mn}-2\sqrt{m}-4\sqrt{n}+4n=3$$
Just to get a better feeling, substitute
$\sqrt{m}=x$
$\sqrt{n}=y$
Now your equation becomes
$x^2+4xy-2x-4y+4y^2=3$
Combining first, second and last term of L.H.S. , we get,
$(x+2y)^2-2(x+2y)=3$
Substitute: $(x+2y)=t$ to get,
$t^2-2t-3=0$
$\implies t=3$ or $t=-1$
But since $t=x+2y=\sqrt{m}+2\sqrt{n} \implies t \ge 0$ (Since $\sqrt{}$ gives positive value in its domain)
$\implies \sqrt{m}+2\sqrt{n}=3$
$\implies \dfrac{\sqrt{m} +2\sqrt{n} +2014}{4-(\sqrt{m} +2\sqrt{n})}= \boxed{2017}$