In a comment Daniel Fischer has linked to a more general version. However, there may be some interest in having a detailed evaluation of the present simpler case available at math StackExchange.
It will be more convenient later on (when taking derivatives for L'Hopital's rule) to make the variable change $u = \frac{1}{x},$ which gives rise to the following equivalent limit:
$$L \;\; = \;\; \lim_{u \rightarrow 0} \left( \frac{a^u + b^u}{2} \right)^{\frac{1}{u}} $$
Note: Actually, the correct counterpart to "$x \rightarrow \infty$" is $u \rightarrow 0^{+}$" $(u$ approaches $0$ from the right). However, for notational simplicity and because both unilateral limits exist as $u$ approaches $0,$ I'm going to write $u \rightarrow 0$ in what follows.
Take the logarithm of both sides:
$$\ln L \;\; = \;\; \ln \left[ \lim_{u \rightarrow 0} \left( \frac{a^u + b^u}{2} \right)^{\frac{1}{u}} \right] $$
Use continuity of the logarithm function:
$$\ln L \;\; = \;\; \lim_{u \rightarrow 0} \left[ \ln \left( \frac{a^u + b^u}{2} \right)^{\frac{1}{u}} \right] $$
Rewrite using an algebraic logarithm property:
$$\ln L \;\; = \;\; \lim_{u \rightarrow 0} \left[ \frac{1}{u} \cdot \ln \left( \frac{a^u + b^u}{2} \right) \right] $$
Use the fact that multiplication by $\frac{1}{u}$ is equivalent to division by $u$:
$$\ln L \;\; = \;\; \lim_{u \rightarrow 0} \left[ \frac{\ln \left( \frac{a^u + b^u}{2} \right)}{u} \right] $$
Rewrite using an algebraic logarithm property:
$$\ln L \;\; = \;\; \lim_{u \rightarrow 0} \left[\frac{\ln ( a^u + b^u )\;-\;\ln 2}{u}\right] $$
Replace with the "L'Hopital rule differentiated version":
$$\ln L \;\; = \;\; \lim_{u \rightarrow 0} \left[\frac{\frac{a^u\ln a \; + \; b^u \ln b}{a^u \; + \; b^u} \; - \; 0}{1} \right] $$
$$\ln L \;\; = \;\; \lim_{u \rightarrow 0} \left[ \frac{a^u\ln a \; + \; b^u \ln b}{a^u \; + \; b^u} \right] $$
Evaluate the limit:
$$\ln L \;\; = \;\; \left[ \frac{a^0\ln a \; + \; b^0 \ln b}{a^0 \; + \; b^0} \right] $$
$$\ln L \;\; = \;\; \left[ \frac{\ln a \; + \; \ln b}{2} \right] $$
Solve for $L$ and rewrite until we get the desired result:
$$L \;\; = \;\; e^{\frac{\ln a \; + \; \ln b}{2}} $$
$$L \;\; = \;\; e^{(\ln a \; + \; \ln b) \cdot \frac{1}{2}} $$
$$L \;\; = \;\; \left[ e^{(\ln a \; + \; \ln b)} \right]^{\frac{1}{2}} $$
$$L \;\; = \;\; \left[ e^{\ln a} \cdot e^{\ln b} \right]^{\frac{1}{2}} $$
$$L \;\; = \;\; \left[ab \right]^{\frac{1}{2}} $$
$$L \;\; = \;\; \sqrt{ab} $$