Consider the real $n \times n$-matrices $A$ and $B$.
Can $A, B$ fail to commute if $e^A=e^B=e^{A+B}=id$ ?
Consider the real $n \times n$-matrices $A$ and $B$.
Can $A, B$ fail to commute if $e^A=e^B=e^{A+B}=id$ ?
Yes, $A$ and $B$ can fail to commute. Consider $$ A = \left[\begin{array}{@{}rrr@{}} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right],\qquad B = \left[\begin{array}{@{}ccc@{}} 0 & -\tfrac{1}{2} & \tfrac{\sqrt{3}}{2} \\ \tfrac{1}{2} & 0 & 0 \\ -\tfrac{\sqrt{3}}{2} & 0 & 0 \end{array}\right], $$ so that $$ A + B = \left[\begin{array}{@{}ccc@{}} 0 & \tfrac{1}{2} & \tfrac{\sqrt{3}}{2} \\ -\tfrac{1}{2} & 0 & 0 \\ -\tfrac{\sqrt{3}}{2} & 0 & 0 \end{array}\right]. $$ Since each of $A$, $B$, and $A + B$ has Frobenius norm equal to $\sqrt{2}$, we have $$ \exp(2\pi A) = \exp(2\pi B) = \exp\bigl(2\pi (A + B)\bigr) = I. $$ However, it's easy to check $AB$ is not symmetric, so $$ BA = (-B^{T})(-A^{T}) = B^{T}A^{T} = (AB)^{T} \neq AB. $$ It follows, of course, that $2\pi A$ and $2\pi B$ don't commute, either.
This is wrong. If $e^{A+B}=I$, then $A+B=2n\pi i$, for all $n\in\mathbf{Z}$, i.e., $2n\pi i-A=B$. Consider $[A,B]=AB-BA=A(2n\pi i-A)-(2n\pi i-A)A=-AA+AA=0$. Hence, if $e^{A+B}=I$, then $A$ and $B$ commute.