Why is $\lim\limits_{n\to\infty}\displaystyle\Big(1-\frac{\sigma^2\xi^2}{2n}+o(\frac1n)\Big)^n=\large e^{-\frac{\sigma^2\xi^2}{2}}$ ?
Why has $o(\frac{1}{n})$ no effect on the term ? Can I also conclude that $\lim\limits_{n\to\infty}\displaystyle\Big(1+o(\frac1n)\Big)^n=1$ ?