I need some hints regarding this exercice.
if $f : [0, \infty)\rightarrow \mathbb{R}$ is a measurable function s.t $\lim_{x\rightarrow \infty} f(x) = a$, prove :
\begin{align} \lim_{x\rightarrow \infty} \frac{1}{x}\int_0^xf(t)dt = a. \end{align}
If I try to integrate the lim inside of the integral by the monotone convergence theorem, I end up with a pathological case $\frac{\infty}{\infty}$.
Thanks for any help !