What is the following product in terms of $n$?
$$\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{7}{8} \cdot \cdots \cdot \frac{2n-1}{2n}$$
Thank you.
What is the following product in terms of $n$?
$$\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{7}{8} \cdot \cdots \cdot \frac{2n-1}{2n}$$
Thank you.
$$\frac{1}{2}\frac{3}{4}\frac{5}{6} \dotsb \frac{2n-1}{2n}=\frac{1\mathbf{2}3\mathbf{4}5 \dotsb (2n-1)\mathbf{2n}}{(2 \cdot 4 \cdot 6 \dotsb 2n)^2}=\frac{(2n)!}{2^{2n}(n!)^2}$$
As an alternative answer that has its uses, this product of fractions can be written as a definite integral:
$$\begin{align} \frac12\frac34\frac56\frac78\dots\frac{2n-1}{2n}&=\frac{(2n-1)!!}{(2n)!!}\\ &=\frac{2}{\pi}\int_{0}^{\pi/2}\sin^{2n}{x}\,\mathrm{d}x \end{align}$$
Given
$$ (1/2)(3/4)(5/6)(7/8)\cdots([2n-1]/2n) $$
Thus
$$ \frac{1}{2} \frac{3}{4} \frac{5}{6} \cdots \frac{2n-1}{2n} = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdots [2n-1] \cdot 2n}{2^{2n} \cdot (1 \cdot 2 \cdot 3 \cdot 4 \cdots 2n)^2 } = \frac{[2n]!}{2^n (n!)^2} $$
Sorry about that... vote up!!!
– johannesvalks Jun 21 '14 at 19:59