If $A+B+C=180^\circ$ and
$\tan \left[\dfrac{A+B-C} 4 \right] \tan \left[ \dfrac{-A+B+C} 4\right] \tan\left[\dfrac{A-B+C} 4 \right] =1$
then prove that
$ 1+ \cos A + \cos B + \cos C = 0$
I tried to use the formula of $\tan(A+B+C)$, but couldn't solve it.