0

I am working on my proofs, and I think this is valid. Can anyone confirm?

For the initial conditions, we have that there are integers $a,b,c,d,m,n,u,v$ such that $$ad-bc=\pm1, u=am+bn, v=cm+dn$$ Now, I can state that suppose $ad>bc$. Then $ad-bc=1$ Thus we can say that both $a,b$ and $c,d$ are integers such that $(a,b)=(c,d)=1$ $$adu-bcu=u, adv-bcv=v $$ Letting $m=du=-bv, n=-cu=av$ Then $$(m,n)=(m,m,n,n)=(du,-bv,-cu,av)=(u(d,-c),v(a,-b))=(u,v)$$ We can argue that $bc>ad$ yields the same result.

Is this okay?

EDIT: I am not sure how to move forward...

Lalaloopsy
  • 1,853

1 Answers1

1

$\begin{eqnarray}{\bf Hint}\ \ \ \text{determinant of}\,\ \left[ \begin{array}{cr} a&\!\! b\\ c & d\end{array}\right] \left[ \begin{array}{cc} m & x\\ n & y\end{array}\right] &=& \left[ \begin{array}{cc} u & \bar u\\ v & \bar v\end{array}\right] \\ \Rightarrow\ \ \color{#0a0} D\!\!\!\!\!\!\!\!\!\! \smash[b]{\underbrace{\color{#0a0}{(my\! -\! nx)}}_{\quad\ \ \large =\,\color{#0a0}{(m,n)}\ {\rm by\ Bezout}}}\!\!\!\!\!\!\!\!\!\!\!\!\!\! &=& {\color{#c00}u\,\bar v-\bar u\,\color{#c00} v}\phantom{I^{I^I}}\\ \\ \end{eqnarray}$

Hence we deduce that $\ \color{#c00}{(u,v)}\mid \color{#0a0}{D\ (m,n)}\ $ since $\,\color{#c00}{(u,v)}\,$ divides the $\rm\color{#c00}{rhs}$ above, so also the $\rm\color{#0a0}{lhs.}$ $ $ QED

Alternatively, this can also be deduced using Cramer's Rule, e.g. see this answer. Notice that the question is simply the special case when the determinant $\,D = \pm1.$

Bill Dubuque
  • 272,048