Suppose we are trying to solve the recurrence
$$T(n) = 4 T(\lfloor n/2 \rfloor) + n^2+n$$
where $T(0)=0.$
Let the binary digits of $n$ be given by
$$n = \sum_{k=0}^{\lfloor \log_2 n \rfloor} d_k 2^k.$$
Now unroll the recurrence to get the following exact formula:
$$T(n) =
\sum_{j=0}^{\lfloor \log_2 n \rfloor}
4^j \sum_{k=j}^{\lfloor \log_2 n \rfloor}
\left(d_k 2^{k-j}\right)^2
+ \sum_{j=0}^{\lfloor \log_2 n \rfloor}
4^j \sum_{k=j}^{\lfloor \log_2 n \rfloor}
d_k 2^{k-j}.$$
To get an upper bound consider the string of one digits, which
gives
$$T(n) \le
\sum_{j=0}^{\lfloor \log_2 n \rfloor}
4^j \sum_{k=j}^{\lfloor \log_2 n \rfloor}
\left(2^{k-j}\right)^2
+ \sum_{j=0}^{\lfloor \log_2 n \rfloor}
4^j \sum_{k=j}^{\lfloor \log_2 n \rfloor}
2^{k-j}.$$
This simplifies to
$$\lfloor \log_2 n \rfloor
\times 4^{\lfloor \log_2 n \rfloor +1}
+ 2^{\lfloor \log_2 n \rfloor +1}.$$
For a lower bound consider a one digit followed by zeros, which gives
$$T(n) \ge
\sum_{j=0}^{\lfloor \log_2 n \rfloor}
4^j
\left(2^{\lfloor \log_2 n \rfloor-j}\right)^2
+ \sum_{j=0}^{\lfloor \log_2 n \rfloor}
4^j
2^{\lfloor \log_2 n \rfloor-j}.$$
This simplifies to
$$(3+\lfloor \log_2 n \rfloor) \times 4^{\lfloor \log_2 n \rfloor}
- 2^{\lfloor \log_2 n \rfloor}.$$
Joining the upper and the lower bound we see that the dominant term in
both is
$$\lfloor \log_2 n \rfloor \times 4^{\lfloor \log_2 n \rfloor}$$
and therefore the asymptotics are
$$\Theta
\left(\lfloor \log_2 n \rfloor \times 4^{\lfloor \log_2 n \rfloor}\right)
= \Theta\left(\log_2 n \times 2^{2\lfloor \log_2 n \rfloor} \right)
\\= \Theta\left(\log n \times 2^{2 \log_2 n } \right)
= \Theta\left(\log n \times n^2\right).$$
The exact result confirms precisely what the Master Theorem would have predicted.
This MSE link points to a series of similar calculations.