if $a>1$, Prove that $\lim a^{1\over n}=1$ Is the result true if $0<a\le1 ?$
My attempt :
let $a^{1/n}=1+h$, then $a=1+nh+\frac{n(n-1)h^2}{2}+\dots+h^n$
so, $a>\frac{n(n-1)h^2}{2}$
or, $|h|<\sqrt{\frac{2a}{n}}$
for given $\epsilon>0$
$|a^{1/n}-1|=|h|<\sqrt{\frac{2a}{n}}<\epsilon$
i.e $n>\frac{2a}{\epsilon^2}$
Hence we can find a suitable $m$ for all $a>0$
Is it correct ?