14

How do we find the following sum (closed form)?

$$S=\sum_{n=1}^{\infty} \frac{\sin ({n})}{n!}$$

StubbornAtom
  • 17,052
user1001001
  • 5,143
  • 2
  • 22
  • 53

2 Answers2

23

Use the identity $\cos(n)+i\sin(n)=(\cos(1)+i\sin(1))^n$: $$\begin{aligned} \sum_{n=1}^\infty\frac{\sin(n)}{n!}&=\Im\sum_{n=1}^\infty\frac{\cos(n)+i\sin(n)}{n!}\\ &=\Im\sum_{n=1}^\infty\frac{(\cos(1)+i\sin(1))^n}{n!}\\ &=\Im e^{\cos(1)+i\sin(1)}\\ &=e^{\cos(1)}\sin(\sin(1)). \end{aligned}$$

Joffysloffy
  • 1,334
6

$$\sum_{n=1}^\infty \frac{\sin(n)}{n!} = \Im\sum\frac{e^{in}}{n!}=\Im e^{e^i}=\Im e^{\cos(1)}e^{i\sin(1)}=e^{\cos(1)}\sin(\sin(1)).$$

pshmath0
  • 10,565