$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\sum_{k = 1}^{N}{n + k - 1 \choose k}:\ {\large ?}}$
The binomial $\ds{{n + k - 1 \choose k}}$ is non-zero whenever
$\ds{0\ \leq\ k\ \leq\ n + k - 1\ \imp\ k \geq 0\,,\ n \geq 1}$. Hereafter, we'll assume those conditions are satisfied.
\begin{align}&\color{#66f}{\large\sum_{k = 1}^{N}{n + k - 1 \choose k}}
=\sum_{k = 1}^{N}\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n + k - 1} \over z^{k + 1}}
\,{\dd z \over 2\pi\ic}
\\[2mm]&=\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n - 1} \over z}\sum_{k = 1}^{N}
\pars{1 + z \over z}^{k}\,{\dd z \over 2\pi\ic}
\\[3mm]&=\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n - 1} \over z}
{1 + z \over z}{\bracks{\pars{1 + z}/z}^{N} - 1 \over \pars{1 + z}/z - 1}\,{\dd z \over 2\pi\ic}
\\[3mm]&=\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n} \over z}
\bracks{{\pars{1 + z}^{N} \over z^{N}} - 1}\,{\dd z \over 2\pi\ic}
\\[3mm]&=\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n + N} \over z^{N + 1}}
\,{\dd z \over 2\pi\ic}
-\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n} \over z}\,{\dd z \over 2\pi\ic}
=\color{#66f}{\large{N + n \choose N} - 1}
\end{align}