$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\int_{0}^{1}{x\ln^{2}\pars{1 - x} \over 1 + x^{2}}\,\dd x
={35 \over 32}\,\zeta\pars{3} + {1 \over 24}\,\ln^{3}\pars{2}
-{5 \over 96}\,\pi^{2}\ln\pars{2}:\ {\large ?}}$.
\begin{align}&\color{#c00000}{%
\int_{0}^{1}{x\ln^{2}\pars{1 - x} \over 1 + x^{2}}\,\dd x}
=\Re\int_{0}^{1}{\ln^{2}\pars{1 - x} \over \ic + x}\,\dd x
=\Re\int_{0}^{1}{\ln^{2}\pars{x} \over \ic + 1 - x}\,\dd x
\\[3mm]&=\Re\int_{0}^{1/\pars{1 + \ic}}
{\ln^{2}\pars{\bracks{1 + \ic}x} \over 1 - x}\,\dd x
=\Re\int_{0}^{\pars{1 - \ic}/2}\ln\pars{1 - x}
\bracks{2\ln\pars{\bracks{1 + \ic}x}\,{1 \over x}}\,\dd x
\\[3mm]&=-2\Re\int_{0}^{\pars{1 - \ic}/2}{{\rm Li}_{1}\pars{x} \over x}\,
\ln\pars{\bracks{1 + \ic}x}\,\dd x
=-2\Re\int_{0}^{\pars{1 - \ic}/2}{\rm Li}_{2}'\pars{x}
\ln\pars{\bracks{1 + \ic}x}\,\dd x
\\[3mm]&=2\Re\int_{0}^{\pars{1 - \ic}/2}{{\rm Li}_{2}\pars{x} \over x}\,\dd x
=2\Re\int_{0}^{\pars{1 - \ic}/2}{\rm Li}_{3}'\pars{x}\,\dd x
\end{align}
$$
\color{#c00000}{%
\int_{0}^{1}{x\ln^{2}\pars{1 - x} \over 1 + x^{2}}\,\dd x}
=2\,\Re{\rm Li}_{3}\pars{1 - \ic \over 2}
$$
With one of the MW formulas in group $\pars{1}$:
\begin{align}
&\overbrace{{\rm Li}_{3}\pars{\half - {\ic \over 2}}
+{\rm Li}_{3}\pars{\half + {\ic \over 2}}}
^{\ds{2\,\Re{\rm Li}_{3}\pars{1 - \ic \over 2}}}
+{\rm Li}_{3}\pars{1 - {2 \over 1 - \ic}}
\\[3mm]&=\zeta\pars{3} + {1 \over 6}\,\ln^{3}\pars{1 - \ic \over 2}
+ {1 \over 6}\,\pi^{2}\ln\pars{1 - \ic \over 2}
-\half\,\ln^{2}\pars{1 - \ic \over 2}\ln\pars{1 + \ic \over 2}
\end{align}
I trust you can take from here.