Find the limit of the equation $$\lim_{x\to-\infty} (x+\sqrt{x^2 + 2x})$$
I start by multiplying with the conjugate:
$$\lim_{x\to-\infty} \left[(x+\sqrt{x^2 + 2x})\left({x - \sqrt{x^2 + 2x}\over x - \sqrt{x^2+2x}}\right)\right]$$
$$\lim_{x\to-\infty} {x^2 - (x^2 + 2x)\over x - \sqrt{x^2+2x}}$$
$$\lim_{x\to-\infty} {-2x\over x - \sqrt{x^2+2x}}$$
divide by highest power of denominator
$$\lim_{x\to-\infty} {(\frac1x)(-2x)\over (\frac1x) x - ({1\over \sqrt{x^2}})\sqrt{x^2+2x}}$$
$$\lim_{x\to-\infty} {-2\over 1 - \sqrt{1+\frac2x}} = {-2 \over 1-\sqrt{1 + 0}} = {-2 \over 0}$$ but I know this is wrong as the answer is $-1$. Where did I mess up? Thanks.