3

The sequence $a_n = \sqrt[n]{(3^n+5^n)}$ is convergent?

Tried to resolve applying the the limit $n\to\infty$ but couldn't figure out how to finish it, any idea?

Thanks

zarathustra
  • 4,891
arthurg
  • 39

2 Answers2

1

Get out the term with maximal absolute value

$(3^n + 5^n)^{\frac{1}{n}} = [5^n((\frac{3}{5})^n +1)]^{\frac{1}{n}} =5((\frac{3}{5})^n +1)^{\frac{1}{n}} \to 5(0+1)^0 = 5$

1

Here is an approach.

$$ a _n =e^{\frac{1}{n}\ln( 3^n+5^n )}= e^{\frac{1}{n}\ln(5^n(1+(3/5)^n) )}= e^{\frac{1}{n}\ln(5^n) +\frac{1}{n}\ln(1+(3/5)^n) ) } $$

$$ \sim {5}\,e^{\frac{1}{n} ( 3/5)^n } \longrightarrow_{n\to \infty} {5}. $$

Note: we used the Taylor series

$$ \ln(1+t) = t+O(t^2) $$