In the particular case $b=1$, it is known that the roots of $\tan(x_n)=x_n$ are close to :
$x_n=(n-\frac{1}{2})\pi-\frac{1}{(n-\frac{1}{2})\pi}-\frac{2}{3}(\frac{1}{(n-\frac{1}{2})\pi})^3-\frac{13}{15}(\frac{1}{(n-\frac{1}{2})\pi})^5-\frac{146}{105}(\frac{1}{(n-\frac{1}{2})\pi})^7-\frac{781}{315}(\frac{1}{(n-\frac{1}{2})\pi})^9-...$
The trivial root $x=0$ is not included in the list. The first positive root $x_1$ is not accurate. The accuracy increasses quickly for larger $\vert n \vert$. The first negative root is denoted $x_0$ ( not accurate) and the next negative roots correspond to $n<0$ so that $x_{-n}=-x_{n+1}$
With the same method of series expansion, I got the roots of $\tan(x_n)=b x_n$ :
$x_n=(n-\frac{1}{2})\pi-\frac{1}{b}\frac{1}{(n-\frac{1}{2})\pi}-\frac{3b-1}{3b^3}(\frac{1}{(n-\frac{1}{2})\pi})^3-\frac{30b^2-20b+3}{15b^5}(\frac{1}{(n-\frac{1}{2})\pi})^5$
$-\frac{525b^3-252b^2+161b-15}{105b^7}(\frac{1}{(n-\frac{1}{2})\pi})^7-\frac{4410b^4-5880b^3+2744b^2-528b+35}{315b^9}(\frac{1}{(n-\frac{1}{2})\pi})^9-...$
and the roots of $x_n \tan(x_n)=b$ with $n>1$ :
$x_n=(n-1)\pi+\frac{b}{(n-1)\pi}-\frac{b^2(b+3)}{3}(\frac{1}{(n-1)\pi})^3+\frac{b^3(3b^2+20b+30)}{15}(\frac{1}{(n-1)\pi})^5$
$-\frac{b^4(15b^3+161b^2+525b+525)}{105}(\frac{1}{(n-1)\pi})^7+\frac{b^5(35b^4+528b^3+2744b^2+5880b+4410)}{315}(\frac{1}{(n-1)\pi})^9-...$
Case $n=1$ : The serie is not convergent for the first root $(n=1)$ because $x_1$ is equivalent to $\sqrt{b}$ when $x$ tends to $0$. So, the serie cannot be expressed in terms of integer powers of $b$ as it was above. An approximate for the first root is :
$x_1=\sqrt b \big( 1-\frac{1}{6}b+ \frac{11}{360}b^2- \frac{17}{5040}b^3- \frac{281}{604800}b^4+ \frac{44029}{119750400}b^5- \frac{12147139}{130767436800}b^6$
$+ \frac{2030761}{784604620800}b^7+ \frac{1381516351}{313841848320000}b^8+…\big)$
This serie is slowly convergent. So, a large number of terms are required if $b$ is not small.