$$I=\int x.\frac{\ln(x+\sqrt{1+x^2})}{\sqrt{1+x^2}}\mathrm dx$$
Try 1: Put $z= \ln(x+\sqrt{1+x^2})$, $\mathrm dz=1/\sqrt{1+x^2}\mathrm dx$ $$I=\int \underbrace{x}_{\mathbb u}\underbrace{z}_{\mathbb v}\mathrm dz=x\int zdz-\int (z^2/2)\mathrm dz\tag{Wrong}$$
Try 2: Put $z= x+\sqrt{1+x^2}$ $$\implies x-z =\sqrt{1+x^2}\implies x^2+z^2-2xz =1+x^2\implies x =\frac{z^2-1}{2z}$$ $$\mathrm dz =\left(1+\frac{x}{\sqrt{1+x^2}}\right)\mathrm dx =\frac{z\mathrm dx}{x-z}=\frac{-2z^2\mathrm dx}{1+z^2}$$ $$I =\int\frac{(z^2-1)\ln z}{2z}.\frac{(1+z^2)\mathrm dz}{-2z^2}$$ $$=\int\frac{(z^4-1)\mathrm dz}{4z^3} =\frac14\int\left(z-\frac1{z^3}\right)\mathrm dz =z^2/2+2/z^2+C\tag{Wrong}$$
Try 3: Put $z =\sqrt{1+x^2},\mathrm dx =x/\sqrt{1+x^2}\mathrm dx$ $$I =\int \ln(x+z)\mathrm dz =\int \ln(z+\sqrt{z^2-1})\mathrm dz$$ Don't know how to solve this integral.
[Note that if I take $u=z+\sqrt{z^2-1}$, it is $=\sqrt{1+x^2}+\sqrt{1+x^2-1}=x+\sqrt{1+x^2}$; same as first try.]
What's wrong in try 1 & 2, how to further solve try 3 and the best method to solve this question?
Update: Sorry, I don't know hyperbolic/inverse hyperbolic trigonometry.