$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
$\ds{\lim_{n\ \to\ \infty}\bracks{\sum_{k = 1}^{n}\fermi\pars{k \over n}
-n\int_{0}^{1}\fermi\pars{x}\,\dd x}:\ {\large ?}}$.
$\ds{\tt\mbox{This is an application of}}$
Abel-Plana formula:
\begin{align}&\color{#c00000}{\sum_{k = 1}^{n}\fermi\pars{k \over n}}
=\sum_{k = 0}^{n - 1}\fermi\pars{k + 1 \over n}
=\sum_{k = 0}^{\infty}\bracks{\fermi\pars{k + 1 \over n}
-\fermi\pars{k + n + 1 \over n}}
\\[5mm]&=\int_{0}^{\infty}
\bracks{\fermi\pars{x + 1 \over n} - \fermi\pars{x + n + 1 \over n}}\,\dd x
+\half\bracks{\fermi\pars{1 \over n} - \fermi\pars{n + 1 \over n}}
\\[3mm]&+\color{#00f}{\ic\int_{0}^{\infty}
\bracks{\fermi\pars{\ic x + 1 \over n} - \fermi\pars{\ic x + n + 1 \over n}
-\fermi\pars{-\ic x + 1 \over n} + \fermi\pars{-\ic x + n + 1 \over n}}\times}
\\[3mm]&\color{#00f}{\dd x \over \expo{2\pi x} - 1}
\\[5mm]&=n\int_{1/n}^{\infty}\fermi\pars{x}\,\dd x
-\int_{1 + 1/n}^{\infty}\fermi\pars{x}\,\dd x
+\half\bracks{\fermi\pars{1 \over n} - \fermi\pars{n + 1 \over n}}
+ \color{#00f}{"\mbox{the blue term}"}
\\[3mm]&=n\int_{1/n}^{1 + 1/n}\fermi\pars{x}\,\dd x
+\half\bracks{\fermi\pars{1 \over n} - \fermi\pars{n + 1 \over n}}
+ \color{#00f}{"\mbox{the blue term}"}
\\[3mm]&=n\int_{0}^{1}\fermi\pars{x}\,\dd x
-n\int_{0}^{1/n}\fermi\pars{x}\,\dd x + n\int_{1}^{1 + 1/n}\fermi\pars{x}\,\dd x
+\half\bracks{\fermi\pars{1 \over n} - \fermi\pars{n + 1 \over n}}
\\[3mm]&\mbox{}+ \color{#00f}{"\mbox{the blue term}"}
\end{align}
Since $\ds{\lim_{n\ \to\ \infty}\color{#00f}{\pars{"\mbox{the blue term}"}} = 0}$
and $\ds{\lim_{n\ \to\ \infty}n\int_{0}^{1/n}\fermi\pars{x}\,\dd x = \fermi\pars{0}}$
and $\ds{\lim_{n\ \to\ \infty}n\int_{1}^{1 + 1/n}\fermi\pars{x}\,\dd x = \fermi\pars{1}}$:
\begin{align}
&\color{#66f}{\large\lim_{n\ \to\ \infty}\bracks{%
\sum_{k = 1}^{n}\fermi\pars{k \over n} - n\int_{0}^{1}\fermi\pars{x}\,\dd x}}
\\[3mm]&=-\fermi\pars{0} + \fermi\pars{1}
+\half\bracks{\fermi\pars{0} - \fermi\pars{1}}
=\color{#66f}{\large{\fermi\pars{1} - \fermi\pars{0} \over 2}}
\end{align}