How to compute
$$S=\csc^2\frac{\pi}{14}+\csc^2\frac{3\pi}{14}+\csc^2\frac{5\pi}{14}$$
I tried to rewrite it in terms of $\sin$
$$ \csc^2\frac{\pi}{14}+\csc^2\frac{3\pi}{14}+\csc^2\frac{5\pi}{14}= \frac{1}{\sin^2\frac{\pi}{14}}+\frac{1}{\sin^2\frac{3\pi}{14}}+\frac{1}{\sin^2\frac{5\pi}{14}}=\\ \\ \frac{\sin^2\frac{3\pi}{14}\sin^2\frac{5\pi}{14}+\sin^2\frac{\pi}{14}\sin^2\frac{5\pi}{14}+\sin^2\frac{\pi}{14}\sin^2\frac{3\pi}{14}}{\sin^2\frac{\pi}{14}\sin^2\frac{3\pi}{14}\sin^2\frac{5\pi}{14}}$$
then i used
$$2\cos x\cos y=\cos(x-y)+\cos(x+y)\\ 2\sin x\sin y=\cos(x-y)-\cos(x+y)$$
then i found \begin{align} S &= 2\frac{\left(\cos\frac{\pi}{7}-\cos\frac{4\pi}{7}\right)^2+\left(\cos\frac{2\pi}{7}-\cos\frac{3\pi}{7}\right)^2+\left(\cos\frac{\pi}{7}-\cos\frac{2\pi}{7}\right)^2}{\left(\cos\frac{\pi}{7}-\cos\frac{4\pi}{7}\right)\left(\cos\frac{2\pi}{7}-\cos\frac{3\pi}{7}\right)\left(\cos\frac{\pi}{7}-\cos\frac{2\pi}{7}\right)} \end{align}
i made a simplification and used again the transformation of product on sum and arrived at \begin{align} S &= 4\frac{6-5\cos\frac{\pi}{7}+2\cos\frac{2\pi}{7}-4\cos\frac{3\pi}{7}+2\cos\frac{4\pi}{7}-4\cos\frac{5\pi}{7}+\cos\frac{6\pi}{7}}{5-8\cos\frac{\pi}{7}+6\cos\frac{2\pi}{7}-5\cos\frac{3\pi}{7}+4\cos\frac{4\pi}{7}-3\cos\frac{5\pi}{7}+\cos\frac{6\pi}{7}} \\ & \cos\frac{6\pi}{7}=-\cos\frac{\pi}{7} \hspace{5mm} \cos\frac{5\pi}{7}=-\cos\frac{2\pi}{7} \hspace{5mm} \cos\frac{4\pi}{7}=-\cos\frac{3\pi}{7} \\ S &= 4\frac{6+6\left(-\cos\frac{\pi}{7}+\cos\frac{2\pi}{7}-\cos\frac{3\pi}{7}\right)}{5+9\left(-\cos\frac{\pi}{7}+\cos\frac{2\pi}{7}-\cos\frac{3\pi}{7}\right)} \end{align}
$$-\cos\frac{\pi}{7}+\cos\frac{2\pi}{7}-\cos\frac{3\pi}{7}=-\frac{1}{2}$$
$$S=4\frac{6-3}{5-\frac{9}{2}}=4\frac{3}{\frac{1}{2}}=4\cdot3\cdot2=24$$