
$$\bigcup\limits_{n\in\mathbb N} A_n$$
The book is asking me to prove that $f(\bigcup\limits_{n\in\mathbb N} A_n) = \bigcup\limits_{n\in\mathbb N} A_n$.
I'm able to prove that f(the notation above) = the notation above U A(n+1) (A(n+1) looks like An above) does that mean that f(the notation above) = the notation above? since n+1 is in N
Does this notation mean the union of the sets $A_1 \cup A_2 \cup ... \cup A_{6565656}$?
$\bigcup_{n\in\mathbb N} A_n$to get $\bigcup_{n\in\mathbb N} A_n$ or$f(\bigcup_{n\in\mathbb N} A_n)$to get $f(\bigcup_{n\in\mathbb N} A_n)$. – Martin Sleziak Sep 20 '14 at 14:22