First convert all ratios of the left hand side in tangent
Observe that $\tan(5\cdot77^\circ)=\cdots=\tan25^\circ$ etc.
So, let $\tan5x=\tan25^\circ\implies5x=180^\circ n+25^\circ\iff x=36^\circ n+5^\circ$ where $n$ is any integer
Like Sum of tangent functions where arguments are in specific arithmetic series or this
$$\tan5x=\frac{\binom51\tan x-\binom53\tan^3x+\binom55\tan^5x}{\binom50-\binom52\tan^2x+\binom54\tan^4x}$$
If $\tan5x=\tan25^\circ,$
$$\tan^5x-\cdots-\binom50\tan25^\circ=0$$
$$\prod_{r=0}^4\tan\left(36^\circ\cdot r+5^\circ\right)=\frac{\tan25^\circ}1$$
$r=0\implies\tan\left(36^\circ\cdot0+5^\circ\right)=\tan5^\circ$
$r=1\implies\tan\left(36^\circ\cdot1+5^\circ\right)=\tan41^\circ$
$r=2\implies\tan\left(36^\circ\cdot2+5^\circ\right)=\tan77^\circ=\cot13^\circ$
$r=3\implies\tan\left(36^\circ\cdot3+5^\circ\right)=\tan113^\circ=-\tan67^\circ=-\cot23^\circ$
$r=4\implies\tan\left(36^\circ\cdot4+5^\circ\right)=\tan149^\circ=-\tan31^\circ$
So, we need to show $$\tan35^\circ\frac{\tan25^\circ}{\tan5^\circ}=\tan75^\circ$$
which is readily available from your formula putting $x=25^\circ$ mentioned here (How can I find the following product? $ \tan 20^\circ \cdot \tan 40^\circ \cdot \tan 80^\circ.$)