In this example, $\mathbb{N} = \{1,2,\ldots\}$
The easiest example I could think of:
Take this set:$$\left\{\frac{1}{n} +j: 1\le j \le k, j\in \mathbb{N}, n\in \mathbb{N} \right\}$$
Define $a_{(j,n)} = \frac{1}{n} + j$.
Give the set $\textbf{K} \times \mathbb{N} = \{1,2,3,4,5,\ldots k\}\times \mathbb{N}$ the order: $<$ where $(a,b) < (c,d)$ iff $b<d \text{ or } b=d \text{ and } a<c$. This orders $\textbf{K}\times \mathbb{N}$ in type $\mathbb{N}$ so that we can define a function $f:\mathbb{N}\to \textbf{K} \times \mathbb{N}$
$$
f(0) = {\min\left(\textbf{K} \times \mathbb{N} , <\right)}\\
f(i+1) = \min\left(\textbf{K}\times \mathbb{N}\setminus f(i), <\right)
$$
Now set $a_i = a_{f(i)}$