2

I'm trying to prove by MI. I have already distributed n+1, but now I'm stuck on how I can show 9 divides the RHS since $42n$ and $3n^3$ does not divide evenly.

$$(n+1)^3+(n+2)^3+(n+3)^3=3n^3+18n^2+42n+36$$

5 Answers5

4

HINT:

Induction:

Let $f(n)=n^3+(n+1)^3+(n+2)^3$

$f(m+1)-f(m)=(m+3)^3-m^3=9(m^2+3m+3)$

So, $f(m+1)$ will be divisible by $9\iff f(m)$ is.

Check for the base case

2

$$(n-1)^3+n^3+(n+1)^3=3n^3+6n=3(n^3-n)+9n$$

Now $n^3-n=(n-1)n(n+1)$ is product of three consecutive integers, hence divisible by $3!$

Also, $$(n+1)^3+(n+2)^3+(n+3)^3=3n^3+18n^2+42n+36\equiv3(n^3-n)\pmod9$$

0

your term is equivalent to $3(n+1)(n^2+2n+3)$
if $n\equiv 0\mod 3$ then $n^2+2n+3\equiv 0 \mod 3$
if $n\equiv 1 \mod 3$, then $n^2+2n\equiv 0 \mod 3$
if $n\equiv 2 \mod 3$ then $n+1 \equiv 0 \mod 3$

0

If the property is true for $n$, then it is true for $n+9$ (all three cubes will increase by a multiple of 9). So it suffices to check for $n=0,1,...8$.

$$0^3+1^3+2^3=9=1\cdot 9$$ $$1^3+2^3+3^3=36=4\cdot 9$$ $$2^3+3^3+4^3=99=11\cdot 9$$ $$3^3+4^3+5^3=216=24\cdot 9$$ $$4^3+5^3+6^3=405=45\cdot 9$$ $$5^3+6^3+7^3=684=76\cdot 9$$ $$6^3+7^3+8^3=1071=119\cdot 9$$ $$7^3+8^3+9^3=1584=176\cdot 9$$ $$8^3+9^3+10^3=2241=249\cdot 9$$

Actually, as you showed that the sum is a multiple of $3$, it even suffices to show that the average is a multiple of $3$ for $n=0, 1, 2$. $$\frac{0^3+1^3+2^3}3=3=1\cdot 3$$ $$\frac{1^3+2^3+3^3}3=12=4\cdot 3$$ $$\frac{2^3+3^3+4^3}3=33=11\cdot 3$$

  • So if I factor out the 3, it will be proof that it is divisible by 9? – RustyShackleford Oct 01 '14 at 14:00
  • If you factor out the $3$ you need to prove that the remaining factor is a multiple of $3$: $9|3x\iff 3|x$. In your case, just prove that $n^3+14n$ is a multiple of $3$ for $n=0, 1, 2$. –  Oct 01 '14 at 14:01
0

$$9\Big|\Big(n^3 + (n+1)^3 + (n+2)^3\Big)\iff9\Big|\Big(3n^3+9n^2+15n+9\Big)\iff3\Big|(n^3+5n)\iff3\Big|\Big(n(n^2+5)\big).$$ It is obviously true when $3|n$.

If the property is true for $n$, then it is true for $n+3$, so it only remains to check that for $n=1,2$, $3\Big|(n^2+5)$.

$$3|6,\\3|9.$$