Classify all commutative rings with $1$ of order $p^3$.
I only observed $1$ can have order $p,p^2,p^3$. If its $p^3$ then $\mathbb{Z}/(p^3)$. Otherwise will it be just be $\mathbb{Z}/(p^2)\times \mathbb{Z}/(p)$ and $\mathbb{Z}/(p) \times \mathbb{Z}/(p) \times \mathbb{Z}/(p)$ ?