$$\lim_{x \to \infty} (x+2)-\sqrt{x^2+6x-1}$$
I've tried multiplying by conjugate and dividing by $x$ but still get $0$ in the denominator.
$$\lim_{x \to \infty} (x+2)-\sqrt{x^2+6x-1}$$
I've tried multiplying by conjugate and dividing by $x$ but still get $0$ in the denominator.
$(x+2)-\sqrt{x^2+6x-1}=\frac{-2x+5}{(x+2)+\sqrt{x^2+6x-1}}=\frac{-2+\frac{5}{x}}{(1+\frac{2}{x})+\sqrt{1+\frac{6}{x}-\frac{1}{x^2}}}$
As $x$ goes to $\infty$, we have limit $-1$.
Setting $\dfrac1x=h,$
$$\lim_{x \to \infty} (x+2)-\sqrt{x^2+6x-1}$$
$$=\lim_{h\to0^+}\frac{1+2h-\sqrt{1+6h-h^2}}h$$
$$=\lim_{h\to0^+}\frac{(1+2h)^2-(1+6h-h^2)}{h(1+2h+\sqrt{1+6h-h^2})}$$
$$=\lim_{h\to0^+}\frac{h(5h-2)}{h(1+2h+\sqrt{1+6h-h^2})}$$
As $h\to0,h\ne0;$ safely cancel out $h$
Finally set $h=0$