If $∫_0^{π/2} \cos ^nxdx=I_n$, prove that $nI_n=\left(n-1\right)I_{n-2}, \left(n>1\right)$
I took $\cos ^nx$ as $\cos ^{n-2}x\cos ^2x$ and replaced $\cos ^2x$ with $1-\sin ^2x$. Then integrated using by parts. Could not arrive at the given result
If $∫_0^{π/2} \cos ^nxdx=I_n$, prove that $nI_n=\left(n-1\right)I_{n-2}, \left(n>1\right)$
I took $\cos ^nx$ as $\cos ^{n-2}x\cos ^2x$ and replaced $\cos ^2x$ with $1-\sin ^2x$. Then integrated using by parts. Could not arrive at the given result
Hint: use $\cos xdx = d\left(\sin x\right)$ : $$\eqalign{ & I_n = ∫_0^{{π \over 2}} {{{\cos }^n}x} dx = ∫_0^{{π \over 2}} {{{\cos }^{n - 1}}x} d\left(\sin x\right) \cr & = \left. {\sin x{{\cos }^{n - 1}}x} \right|_0^{{π \over 2}} + \left(n - 1\right)∫_0^{{π \over 2}} {{{\sin }^2}x{{\cos }^{n - 2}}x} dx \cr & = \left(n - 1\right)∫_0^{{π \over 2}} {\left(1 - {{\cos }^2}x\right){{\cos }^{n - 2}}x} dx \cr & = \left(n - 1\right){I_{n - 2}} - \left(n - 1\right){I_n} \cr & \Longrightarrow n{I_n} = \left(n - 1\right){I_{n - 2}} }$$