In a triangle, A, B, C are three corners of the triangle, try to prove that :
$$\root 3 \of {1 - \sin A\sin B} + \root 3 \of {1 - \sin B\sin C} + \root 3 \of {1 - \sin C\sin A} \geqslant {3 \over 2}\root 3 \of 2 $$
So complicated that I have no idea...