Let $n>1$ and $c_0>c_1>c_2>\dots >c_n>0$ and $f(z)=c_0+c_1 z+\dots + c_n z^n$. Show that this polynomial doesnt have zeros in a unit ball $B(0,1)$.
Can you give me some feedback?
Let $n>1$ and $c_0>c_1>c_2>\dots >c_n>0$ and $f(z)=c_0+c_1 z+\dots + c_n z^n$. Show that this polynomial doesnt have zeros in a unit ball $B(0,1)$.
Can you give me some feedback?
Consider $$(z-1)f(z)=-c_0+(c_0-c_1)z+(c_1-c_2)z^2+\ldots+c_nz^{n+1}.$$ If $|z|<1$ then by the triangle inequality $$|(c_0-c_1)z+(c_1-c_2)z^2+\ldots+c_nz^{n+1}|<c_0-c_1+c_1-c_2+\ldots+c_n=c_0$$ and so $(z-1)f(z)\neq 0$.