Let be $G$ a group and $H$ and $K$ two subgroups such that $H\leq K \leq G$.
Let be $N\trianglelefteq G$. How can I prove that the relationions
$NH=KN\;$ and $\;H\cap N=K \cap N$ imply $H=K$?
Thanks for the help!
Let be $G$ a group and $H$ and $K$ two subgroups such that $H\leq K \leq G$.
Let be $N\trianglelefteq G$. How can I prove that the relationions
$NH=KN\;$ and $\;H\cap N=K \cap N$ imply $H=K$?
Thanks for the help!
Apply Dedekind's Modular Law: if $H \leq K$, $NH=KN$ and $H \cap N = K \cap N$, then $$H=H(H \cap N)=H(K \cap N)= K \cap NH= K \cap KN=K.$$
Hint: $H/H \cap N\cong HN/N=KN/N\cong K/K\cap N$