Questions tagged [sum-of-squares-method]

Proofs of inequalities by the Sum of Squares method (SOS).

Let $f(a,b,c)=S_a(b-c)^2+S_b(a-c)^2+S_c(a-b)^2$. Then:

  • If $S_a\geq0$, $S_b\geq0$ and $S_c\geq0$ then $f(a,b,c)\geq0$.

  • If $S_a+S_b+S_c\geq0$ and $S_aS_b+S_aS_c+S_bS_c\geq0$ then $f(a,b,c)\geq0$.

  • If $a\geq b\geq c$, $S_a\geq0$, $S_b\geq0$ and $S_b+S_c\geq0$ then $f(a,b,c)\geq0$.

  • If $a\geq b\geq c$, $S_c\geq0$, $S_b\geq0$ and $S_b+S_a\geq0$ then $f(a,b,c)\geq0$.

  • If $a\geq b\geq c$, $S_c\geq0$, $S_b\geq0$ and $a^2S_b+b^2S_a\geq0$ then $f(a,b,c)\geq0$.

310 questions
-1
votes
1 answer

notaion in SOS theorem

The theorem is A polynomial $f$ has a degree-$d$ SOS certificate if and only if there exists a positive semidefinite matrix $A$ such that for all $\in\{ 0,1 \}^$, $x\in \{ 0,1 \}^n$, $$()=⟨(1,)^{⊗/2},(1,)^{⊗/2}⟩.$$ I am confused with the tuple…
Diana
  • 19
  • 3