I have problem of eliminating some variables from a set of equations, which contain logarithmic function, in order to obtain a differential equation.
These are the parameter and functions in eq1:
Ξ = (EE*((1 + B KK) Sqrt[M] Log[(1 - x0)/(1 - xw)] -
B Δ Subscript[Θ, ∞])^2)/(\
Δ^2*(Γ*(1 - xw)*(Log[(1 - x0)/(1 - xw)] -
Δ/Sqrt[M]*B*Subscript[Θ, ∞]) -
KK*B*Subscript[Θ, ∞]));
g1 = ((Δ*Γ*(xi - xw) + KK*Sqrt[M]*
Log[(1 - x0)/(1 - xi)])*(Subscript[Θ, ∞] -\
Γ*(xi -xw)))/((Subscript[Θ, ∞] - \
Γ*(xi - xw))*Δ*B -
Sqrt[M]*(1 + KK*B)*Log[(1 - x0)/(1 - xi)]);
g2 = ((Δ*Γ*(xi - xw) +
KK*Sqrt[M]*Log[(1 - x0)/(1 - xi)])*(1 + KK*B))/(Δ*
B*(Subscript[Θ, ∞] -
Γ*(xi - xw)) - (1 + KK*B)*Sqrt[M]*Log[(1 - x0)/(1 - xi)]);
These are the equations to be combined:
eq1 = H'[T] ==
1/Ξ*(EE*(Γ*(xi - xw) - B*g1))/(KK + g2);
eq2 = H[T] == (Δ*Γ*(xi - xw) +
KK*Sqrt[M]*Log[(1 - x0)/(1 - xi)])/(Δ*
B*(Subscript[Θ, ∞] -
Γ*(xi - xw)) - Sqrt[M]*(1 + KK*B)*Log[(1 - x0)/(1 - xi)]);
eq3 = Xp == (Log[(1 - x0)/(1 - xw)] (-Sqrt[M] (KK (1 + B KK) Sqrt[M] +
(-1 + xw) Γ Δ) Log[(1 - x0)/(1 - xw)] +
B (-1 + xw) Γ Δ^2 Subscript[\
Θ, ∞]))/((1 + B KK) Sqrt[M]*
Log[(1 - x0)/(1 - xw)] -
B Δ Subscript[Θ, ∞])^2;
Eliminate[{eq1, eq2, eq3}, {EE, Δ, Γ, M,
KK, B, Subscript[Θ, ∞], xi, xw, x0}]
The long running time implies that there should be some tricks to deal with suck kind of problem. I think the issue is lying in the logarithmic function. This is a very similar answered question.
Simplify, and try again. This is helping Mathematica to eliminate. Since Mathematica tries to solve this equation system at once, it might be slow. – gurluk Dec 03 '15 at 08:02\[CapitalXi],Solve[eq1, xi] // FullSimplifyto obtainxi, then plug it ineq2,(eq2 /. xi ->1 + E^((\[CapitalDelta] \[CapitalXi] Derivative[1][H][T])/(EE Sqrt[M])) (-1 + x0)) // FullSimplify, and assign the resultingH[T]aseq4 = H[T](note the expression has not be pasted here), the process is fine up to now, then I tryEliminate[{eq3, eq4}, x0], however, it is slow again...help – Enter Dec 04 '15 at 03:08