An accurate way to interpolate between two quaternions is to use Spherical Linear Interpolation (Slerp) because it preserves the unit length, whereas straightforward linear interpolation does not, as shown by this example:
Clear[slerp];
slerp[q1_, q2_, f_] := Module[{omega},
omega = ArcCos[Dot[Normalize@q1, Normalize@q2]]];
If[PossibleZeroQ[omega],
q1,
(Sin[(1 - f) omega] q1 + Sin[f omega] q2)/Sin[omega]
]
]
q1 = {1,0,0,0};
q2 = {0,1,0,0};
q3 = {0,0,1,0};
(* Linear interpolation using Interpolation *)
qint = Interpolation[{{0,q1},{1,q2}},InterpolationOrder->1];
Plot[{Norm@qint[t], Norm@slerp[{1, 0, 0, 0}, {0, 1, 0, 0}, t]}, {t, 0, 1},
AxesLabel -> {"time", "length"}, PlotRange -> {0.7, 1.01},
PlotStyle -> {Automatic, Dashed},
Epilog -> {Text["Linear Interpolation", {0.5, 0.75}],
Text["Spherical Linear Interpolation", {0.5, 0.98}]}
]

What's nice thing about Interpolation, however, is that it is easy to give it a list of vectors to get an interpolating function valid over the specified range, and it works fast:
Interpolation[{{0,q1},{1,q2},{2,q3}},InterpolationOrder->1]
InterpolatingFunction[{{0,2}},<>]
How can I create something like an InterpolatingFunction that preserves the unit-length property?
This is what I came up with, but it seems kludgy and it is very slow (this code does not check input bounds):
Clear[slerpInterpolation];
slerpInterpolation[q_List] := Function[{t},
Module[{times, quaternions, pos, u, dt},
times = q[[All, 1]];
quaternions = q[[All, 2]];
pos = Last@Flatten@Position[t - times, x_ /; x >= 0];
dt = times[[pos + 1]] - times[[pos]];
u = (t - times[[pos]])/dt;
slerp[quaternions[[pos]], quaternions[[pos + 1]], u]
]
]
It is too slow in practice, giving about 10 evaluations per second on my laptop. Compare that with regular interpolation:
qlist = Transpose[{Range[100000] - 1, Normalize /@ RandomReal[{-1, 1}, {100000, 4}]}];
sint = slerpInterpolation[qlist];
lint = Interpolation[qlist, InterpolationOrder -> 1];
AbsoluteTiming[Do[sint[541.236], {10}]][[1]]/10
0.0967707
AbsoluteTiming[Do[lint[541.236], {10000}]][[1]]/10000
7.2522*10^-6