edit (30 Jan 2016) : one error corrected, rotation (§4) added,result slightly higher (1.3%)
I propose the following solution :
1) interactively mark the frontier of the object by points
2) interactively mark the center of the object
3) use polar coordinates (r,theta) with the origin at the center. Thus r[theta] is symetric around a angle theta0, and can be approximated by a linear combination of Cos[k (th-th0)] (k = 0,1..8)
4) rotate the object by making th0 = 0
5) considering that the object is now of revolution around the theta=0 axe, integrate in spherical coordinates
In details :
1) and 2) :
img = Import["https://i.stack.imgur.com/kL6cd.jpg"]

I obtain the coordinates list :
coordinatesList = {{57.5`, 72.7`}, {58.9`, 69.9`}, {57.2`,
63.9`}, {53.6`, 57.9`}, {53.3`, 55.8`}, {54.`, 49.1`}, {57.9`,
41.6`}, {66.`, 39.9`}, {71.3`, 38.8`}, {79.1`, 37.8`}, {86.8`,
33.5`}, {89.3`, 31.1`}, {90.`, 31.1`}, {93.9`, 28.6`}, {99.2`,
27.5`}, {105.9`, 25.4`}, {106.6`, 25.4`}, {111.5`, 22.6`}, {116.8`,
20.8`}, {123.9`, 20.1`}, {129.9`, 21.5`}, {136.2`,
21.2`}, {142.6`, 19.8`}, {149.6`, 18.7`}, {156.4`, 18.7`}, {164.5`,
19.1`}, {165.5`, 19.1`}, {166.2`, 19.1`}, {171.9`,
24.7`}, {175.1`, 30.4`}, {177.2`, 37.1`}, {178.2`, 43.1`}, {178.2`,
47.3`}, {178.2`, 49.4`}, {178.2`, 53.6`}, {176.5`,
57.2`}, {172.9`, 60.`}, {171.5`, 64.6`}, {172.2`, 69.9`}, {175.4`,
72.`}, {180.4`, 73.1`}, {182.8`, 77.6`}, {182.8`, 84.4`}, {181.4`,
91.8`}, {178.6`, 98.8`}, {177.5`, 106.2`}, {170.5`,
113.6`}, {163.1`, 118.9`}, {154.6`, 118.6`}, {146.8`,
117.9`}, {138.`, 117.2`}, {129.9`, 113.6`}, {122.5`,
114.7`}, {114.4`, 113.6`}, {104.5`, 110.5`}, {95.6`,
112.9`}, {85.8`, 113.3`}, {73.8`, 110.1`}, {63.9`, 107.3`}, {54.7`,
99.2`}, {50.1`, 87.5`}, {52.2`, 77.3`}}
and the center :
center = {116.82352941176465`, 71.6470588235294`}
3) Construction of the polar coordinates list :
polarCoordinatesList =
{ArcTan @@ (# - center), Norm[# - center]} & /@ coordinatesList;
ListPolarPlot[polarCoordinatesList]
approximation by a linear combination of Cos[k (th-th0)] :
n = 8;
var = Table[a[i], {i, 0, n}] // Append[#, {th0, 0}] &
exp = Sum[a[i] Cos[i (th - th0)], {i, 0, n}]
rule = FindFit[polarCoordinatesList, exp, var, th]
sol[th_] = exp /. rule;
Show[img,
Epilog -> (Translate[#, center] & @
First @ PolarPlot[sol[th], {th, -Pi, Pi}]) ]
4) rotation of the object :
solRotated[th_] = exp /. th0 -> 0 /. rule;
5) integration of the volume :
Volume[{r , th, ph}, {th, 0, Pi}, {ph, -Pi, Pi}, {r, 0, solRotated[th]},
"Spherical"] // Chop[#, 10^-8] &
Result :
749299.
ImageMultiply[i, Erosion[FillingTransform[ Dilation[ FillingTransform@ DeleteSmallComponents@ MorphologicalPerimeter[GradientFilter[i, 3] // ImageAdjust, .2], 1]], 2]]– Dr. belisarius Jan 19 '16 at 18:41