AB = {{9.19, -7.67}, {9.59, -7.32}, {9.81, -7.99}, {12.53, -9.98},
{7.40, -6.26}, {8.03, -6.94}, {9.40, -7.56}, {9.71, -7.63}, {8.15,
-6.89}, {11.57, -9.48}, {11.82, -9.67}, {10.97, -9.15}, {7.57,
-6.20}, {11.50, -8.91}, {8.06, -6.13}, {8.65, -7.17}, {8.39, -7.01},
{14.04, -11.65}, {9.71, -8.14}, {8.19, -6.85}, {7.70, -6.22}, {8.37,
-6.85}, {8.18, -6.41}, {8.81, -7.29}, {10.78, -8.27}, {10.05, -8.79},
{8.00, -6.25}, {7.29, -6.21}, {9.22, -6.95}, {12.49, -9.80}, {8.3,
-6.61}, {7.14, -5.72}, {6.56, -5.27}, {11.54, -9.71}, {10.43, -7.92},
{8.65, -6.95}, {7.54, -6.06}, {7.93, -6.52}, {9.70, -7.80}, {9.86,
-7.73}};
Fin[x_, a_, b_, A_, B_, p_, i_] :=
UnitStep[A^2 B^2 - ((B^2 Cos[p]^2 + A^2 Sin[p]^2) (x[[i, 1]] -
a)^2 + 2 Sin[p] Cos[p] (B^2 - A^2) (x[[i, 1]] - a) (x[[i, 2]] -
b) + (B^2 Sin[p]^2 + A^2 Cos[p]^2) (x[[i, 2]] - b)^2)]
FinTotal[x_, a_, b_, A_, B_, p_] :=
Sum[Fin[x, a, b, A, B, p, i], {i, 1, Length[x]}]
m = -0.8;
p = ArcTan[m];
MinX = Min[AB[[All, 1]]];
{aMin, AMin, BMin} = {a, A, B} /.
NMinimize[{A B,
FinTotal[AB, a, m a, A, B, p] == 0.9 Length[AB] && MinX < a &&
0 < B < A < a/Cos[p] }, {a, A, B}][[2]]
Simplify::time: Time spent on a transformation exceeded 300.` seconds, and the transformation was aborted. Increasing the value of TimeConstraint option may improve the result of simplification. >>
{}button above the edit window. The edit window help button?is also useful for learning how to format your questions and answers. You may also find this this meta Q&A helpful – Michael E2 Jan 21 '16 at 19:50