$y''+\lambda y=0, y'(0)=0,y(1)+y'(1)=0$
x = FindInstance[{Cot[Sqrt[λ]] == Sqrt[λ], λ >= 0, λ < 100}, λ, 100]
{{λ->Root[{-Cot[Sqrt[#1]] + Sqrt[#1] &, 0.74017388439496704222}]},
{λ->Root[{-Cot[Sqrt[#1]] + Sqrt[#1] &, 11.7348618299419683428}]},
{λ->Root[{-Cot[Sqrt[#1]] + Sqrt[#1] &, 41.438807847570465811}]},
{λ->Root[{-Cot[Sqrt[#1]] + Sqrt[#1] &, 90.808214209215248455}]}}
I want to find the square root of these numbers and don't know how:
Table[Sqrt[λ] /. x[[i]], {i, 4}]
{Sqrt[Root[{-Cot[Sqrt[#1]] + Sqrt[#1] &, 0.74017388439496704222}]],
Sqrt[Root[{-Cot[Sqrt[#1]] + Sqrt[#1] &, 11.7348618299419683428}]],
Sqrt[Root[{-Cot[Sqrt[#1]] + Sqrt[#1] &, 41.438807847570465811}]],
Sqrt[Root[{-Cot[Sqrt[#1]] + Sqrt[#1] &, 90.808214209215248455}]]}
How do I take the square root of the .7401 and not of Root?
Sqrt[x[[All, -1, -1, -1, -1]]]– RunnyKine Apr 30 '16 at 03:05λ /. N[x] // Sqrt– RunnyKine Apr 30 '16 at 03:17Sqrt[Root[{-Cot[Sqrt[#1]] + Sqrt[#1] &, 0.74017388439496704222}]]is a exact numeric object. You can approximate it to any degree of precision withN[..., prec]. – Michael E2 Apr 30 '16 at 03:33