Use this code to generate my problem
n = Join[Table[i, {i, 6, 100, 10}], Table[i, {i, 100, 600, 50}]];
m = 247(kg);
L = 6.8(m);
II = 4.5510^-5(m^4);
EE = 2.110^11(Pa);
m = N@Table[247/n[[i]], {i, 1, Length[n]}];
k = Table[
1.61 ((E II)/(2 (L/n[[i]]))^3) (L/n[[i]])^2, {i, 1, Length[n]}];
M = Table[ m[[i]] IdentityMatrix[n[[i]] - 1], {i, 1, Length[n]}];
K = Table[
Table[0, {j, 1, n[[k]] - 1}, {i, 1, n[[k]] - 1}], {k, 1,
Length[n]}];
For[ii = 1, ii <= Length[n], ii++,
For[j = 1, j <= n[[ii]] - 1, j++,
For[i = 1, i <= n[[ii]] - 1,
i++, {If[j == i, K[[ii, j, i]] = 2 k[[ii]], Nothing],
If[i == j + 1, K[[ii, j, i]] = -k[[ii]], Nothing],
If[i == j - 1, K[[ii, j, i]] = -k[[ii]], Nothing]}]]]
sol = Sqrt[
Table[Eigenvalues[N[Inverse[M[[i]]]].K[[i]]], {i, 1, Length[n]}]];
freqtable =
Table[Table[(Reverse@sol[[i]])[[j]], {i, 1, Length[n]}], {j, 1, 5}];
freqPoints = Table[Transpose[{n[[All]], freqtable[[i]]}], {i, 1, 5}];
ListPlot[freqPoints, Joined -> True,
PlotLegends -> {"!(*SuperscriptBox[SubscriptBox[(ω), (1
)], (2)])",
"!(*SuperscriptBox[SubscriptBox[(ω), (2)], (2)])",
"!(*SuperscriptBox[SubscriptBox[(ω), (3)],
(2)])",
"!(*SuperscriptBox[SubscriptBox[(ω), (4)], (2)])",
"!(*SuperscriptBox[SubscriptBox[(ω), (5)],
(2)])"}, AxesLabel -> {"N", "rad/s"},
BaseStyle -> {FontFamily -> "Courier New", FontSize -> 10}]
This should produce you the following plot

Now the problem is that I have to plot this from 0-600, but as you can see, nothing really interesting happens for N greater than 100.
So what I want is to somehow show more of the 0-100 part and show less of the 100-600 part. Is there a way to somehow rescale the x-axis?
ListPlotwithListLogLinearPlot– bill s May 03 '16 at 23:06