I am very scared of big equations. So whenever I see one, I go numeric (sometimes it is faster also).
m = 0.25; \[Phi] = 2 \[Pi]/3; k = 0.8; a = 0.3; b = 0.4;
h1 = -1 - m*x - a*Sin[2*\[Pi]*(x - t) + \[Phi]]
h2 = 1 + m*x + b*Sin[2*\[Pi]*(x - t)]
F1 = Q1 + a*Sin[2*\[Pi]*(x - t)] + b*Sin[2*\[Pi]*(x - t) + \[Phi]]
Z1 = 0.002; N1 = Sqrt[M1^2 + (1/k)];
I am going to show one example for
M1=1
You can use NDSolve for a given Q1, x, and t like
Clear[f]
f[y_] = f[y] /.
Block[{Q1 = 1, x = 0.3, t = 0.2},
NDSolve[{f''''[y] + Z1*(6 f''[y]*f'''[y]*f'''[y] + 3 f''[y]*f''[y]*f''''[y]) -
N1*N1*f''[y] == 0, f[h2] == F1/2, f[h1] == -(F1/2), f'[h1] == 0, f'[h2] == 0},
f[y], y]];
SE = D[f[y], {y, 3}] + Z1*D[f[y], {y, 3}]*D[f[y], {y, 2}]*D[f[y], {y, 2}] +
2*D[f[y], {y, 2}]*D[f[y], {y, 2}]*D[f[y], {y, 2}]*D[f[y], {y, 3}] -
N1*N1*D[f[y], y];
SE /. y -> 0
-2.44329
You can create a {x,t,SE} and use any numerical method to integrate. A lazy person like me will simply use Sum (which works nice for small dx and dt)
data= Table[
{Q,
Sum[
Clear[f];
f[y_] =
f[y] /. Block[{Q1 = Q, x = x1, t = t1},
NDSolve[{f''''[y] +
Z1*(6 f''[y]*f'''[y]*f'''[y] + 3 f''[y]*f''[y]*f''''[y]) -
N1*N1*f''[y] == 0,
f[h2] == F1/2, f[h1] == -(F1/2), f'[h1] == 0, f'[h2] == 0},
f[y], y]][[1]];
SE = D[f[y], {y, 3}] +
Z1*D[f[y], {y, 3}]*D[f[y], {y, 2}]*D[f[y], {y, 2}] +
2*D[f[y], {y, 2}]*D[f[y], {y, 2}]*D[f[y], {y, 2}]*
D[f[y], {y, 3}] - N1*N1*D[f[y], y];
SE /. y -> 0,
{x1, 0., 1, 0.1}, {t1, 0., 1, 0.1}]}
, {Q, -3., 3., 0.5}]
{{-3., 1134.48}, {-2.5, 855.009}, {-2., 639.126}, {-1.5,
461.605}, {-1., 305.008}, {-0.5, 157.953}, {0.,
13.8868}, {0.5, -129.68}, {1., -271.471}, {1.5, -406.275}, {2., \
-524.337}, {2.5, -610.275}, {3., -641.51}}
And then a aimple ListlinePlot
ListLinePlot[data, Mesh -> All]

For the ContourPlot, you can fix a value for Q1 and generate a Table in a same way.
M1 = 1; Q0 = 1; t0 = 1;
data = Table[
Clear[f];
f[y_] =
f[y] /. Block[{Q1 = Q0, x = x1, t = t0},
NDSolve[{f''''[y] +
Z1*(6 f''[y]*f'''[y]*f'''[y] + 3 f''[y]*f''[y]*f''''[y]) -
N1*N1*f''[y] == 0,
f[h2] == F1/2, f[h1] == -(F1/2), f'[h1] == 0, f'[h2] == 0},
f[y], y]][[1]];
{x1, y1, f[y1]},
{x1, 0., 1, 0.1}, {y1, 0., 1, 0.1}];
data = Flatten[data, 1];
ListContourPlot[data]

For a better result and smoother plot you can reduce the stepsize. I use 0.1. You can go further below like 0.01 or less (I am too impatient for that). Do some trial value and you can see if your result is varying much due to the change and you can guess the optimum step size.
For multiple variable
a = 0.3; b = 0.4; m = 0.25; \[Phi] = 2 \[Pi]/3; M1 = 1; k = 0.8;
Nt = 0.8;Nb = 0.4; Pr = 0.2; L = 0.1; Bm = 4; Bh = 2; ;Gr = 0.7;
Br = 1; \[Zeta] = 0.002; Rn = 0.6;
Clear[f1, f2, f3]
{f1[y_], f2[y_], f3[y_]} = {f1[y], f2[y], f3[y]} /.
Block[{Q1 = 1, x = 0.3, t = 0.2, N1 = 0.1, F1 = 0.3},
NDSolve[{f1''''[
y] + \[Zeta]*(6 f1''[y]*f1'''[y]*f1'''[y] +
3 f1''[y]*f1''[y]*f1''''[y]) - N1*N1*f1''[y] + Gr*f2'[y] +
Br*f3'[y] == 0,
(1 + 1)*f2''[y] + f3'[y]*f2'[y] + f2'[y]*f2'[y] == 0,
f3''[y] + f2''[y] == 0,
f1[h2] == F1/2, f1[h1] == -(F1/2), f1'[h1] == 0,
f1'[h2] == 0, f3'[h1] == f3[h1], f3'[h2] == (1 - f3[h2]),
f2'[h1] == Bh*f2[h1], f2'[h2] == (1 - f2[h2])}, {f1[y], f2[y],
f3[y]},
y]][[1]];
{f1[0], f2[0], f3[0]}
{-0.0191435, 0.525077, 0.379438}
Zetain Mathematica is the Riemann zeta function $\zeta(s)$. You mustn't use it as a constant. – Artes May 07 '16 at 12:29aandb? What's the value ofyinSE? – xzczd May 09 '16 at 05:38