Edit: Posted for review.. I'm not sure if this is correct.
making the substitution per comments, p=r Exp[I t] so that
dp == r I Exp[I t] dt == I p dt :
With[{r = 2, a = 1, b = 1}, (1/ (2 Pi I)) NIntegrate[
I Exp[a^2/(2 (r Exp[I t])) + b^2/2 (r Exp[I t])],
{t, 0 , 2 Pi}]]
1.26607 + 4.24074*10^-15 I
(Note this agrees with the BesselI[0, 1] result per comments)
for the record I first though we could use the region integrate capability:
With[{r = 2, a = 1, b = 1},
(1/ (2 Pi I)) NIntegrate[
1/((x + I y))*Exp[a^2/(2*(x + I y)) + b^2/2*(x + I y)],
Element[{x, y}, Circle[{0, 0}, r]]]]
2.82716*10^-16 - 1.13032 I
which is the same result as we get with the first sub but with dp/dt = r:
With[{r = 2, a = 1, b = 1},
(1/ (2 Pi I)) NIntegrate[
1/(Exp[I t])*Exp[a^2/(2*(r Exp[I t])) + b^2/2*(r Exp[I t])],
{t, 0 , 2 Pi}]]
7.0679*10^-17 - 1.13032 I
f[p_]:=1/p Exp[1/(2 p)+1/2 p]; (1/(2 Pi I)) contourIntegrate[ Cos[t]+I Sin[t], f,{t,0,2 Pi}]. The answer isBesselI[0,1]. – Jens Jun 20 '16 at 05:15