Here's some code that can solve this problem that I wrote a while back for another question.
$TrigFns = {Sin, Cos, Tan, Csc, Sec, Cot};
(WRules = $TrigFns == (Through[$TrigFns[x]] /. x -> 2 ArcTan[t] //
TrigExpand // Together) // Thread);
invWRules = #[[1]] -> Solve[#, t, Reals] & /@ WRules;
convert[expr_, (trig : Alternatives @@ $TrigFns)[x_]] :=
Block[{temp, t},
temp = expr /. x -> 2 ArcTan[t] // TrigExpand // Factor;
temp = temp /. (trig /. invWRules) // FullSimplify // Union;
Or @@ temp /. trig -> HoldForm[trig][x] /. ConditionalExpression -> (#1 &)]
In the example provided in the question:
convert[Csc[x], Sec[x]] // ReleaseHold
$$-\frac{\sec (x)}{\sqrt{\sec (x)-1} \sqrt{\sec
(x)+1}} \quad \Big|\Big|\quad \frac{\sec (x) \sqrt{\frac{\sec
(x)+1}{\sec (x)-1}}}{\sec (x)+1}
$$
These solutions cover both quadrants (although the result could be presented in a nicer form).
To check this, let's plot:
Plot[{Csc[x], -(Sec[x]/(Sqrt[-1 + Sec[x]] Sqrt[1 + Sec[x]])), (
Sec[x] Sqrt[(1 + Sec[x])/(-1 + Sec[x])])/(1 + Sec[x])}, {x, 0, 2 Pi},
PlotStyle -> {Blue, Dotted, Dashed}]

:)– dearN Oct 10 '12 at 19:07